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1.0 Introduction

The purpose of this investigation was to test the relative

importance of various aspects of correcting predicted values on a

grid by incorporating information from observed values at scat-

tered data points. Grid and observation configurations were

patterned after those routinely available over North America.

Although investigations were limited to the univariate objective

analysis methods, I believe the results are indicative of those

that would be achieved in the more general case.

Previous investigations on the error contribution of various

steps in the objective analysis process are limited. Koehler

(1979) separately studied the errors of a number of grid-to-

observation and observation-to-grid interpolation (approximation)

routines. He noted that although little attention is typically

paid to the grid-to-observation interpolation process significant

errors may be caused by this phase of objective analysis. While

this may be a surprise since these errors are usually small

compared to the first-guess errors at thr> grid points, my results

further demonstrated that the contribution to overall error made

by the grid-to-observation interpolation process should not bo

ignored. This investigation complements recent work by Seaman

(1933) regarding the accuracy of statistical and successive cor-

rection schemes. His work provides expected mean squared error

estimates for these schemes. His work is v/ery thorough in that

it provides estimates of the analysis error as the parameters of

the first-guess error are varied while holding the assumed values

constant, and vice-versa.



In Section 2 T derive a generalized expression for thr?

overall error in objective analysis which leads to several

observations. In Section 3 I describe the simulation method and

the various options which can be easily handled. In Section 4 T

present the results of the simulations and discuss their implica-

tions with regard to the observations made in Section 2.

2.0 The Form of the Error Term in Objective Analysis

My setting for study of the objective analysis process

assumes the following:

(i) The true field (function) to be analyzed is H.

(ii) H is known imperfectly at grid points through a "first-

guess" which is in error by an amount to be denoted by g. The

error is a normally distributed stationary random function which

has a certain spatial correlation =and standard deviation.

(iii) H is imperfectly measured at observation points yield-

ing values with errors o. These errors are independent and

normally distributed with certain standard deviation.

The nature of the errors makes it only possible to evaluate

g at grid points, and o at observation points, although it is

sometimes convenient to think of them as functions rather than as

sets of errors. The objective analysis process consists of int-

erpolation of the first-guess values from the grid to the obser-

vation points (by a linear operator designated M) followed by

interpolation of the difference between the observed and first-

guess values back to the grid point (by a linear operator desig-

nated L) as a correction to the first-guess values. Denote the

error in the entire process by E, then the fina] approximation is



H + E = H * g f L(H + o - M(H + g))

Let m(H) represent the error in the approximation of H by 4(H),

then M (H) = H - m(H). Rearranging and simplifying the above,

leads to

E = g + L(H + o - M (H) - M (g)

)

= g + L(H + o - H + m (H) - M (g) )

= g + L ( o + m ( H ) )
- L M

( g ) ,

and final ly,

E = L(o) + Lm(H) + (g - LM(g)) . (I)

Thus the error is made up of three parts. The term L(o) is

dependent on the 'function' o, which describes instrumentation

error and is typically not controlable. It is obviously advan-

tageous to have o small. Since the values of o are assumed

independent and random it is desirable for L to be a smoothing

operator. The second part, Lm (H) is within our control an'1 the

grid-to-observation point interpolations error should be made

small. If it is, then interpolation of the error back to the

grid points by L is also small, assuming this smoothing operator

is typical and does not magnify the error. The third part (g -

LM(g)) is the error in interpolation of the first-guess error at

the grid points to the observation locations by M , then back to

the grid points by L. While it is possible that a certain sym-

biosis between parts could occur, the goal is certainly for each

interpolation process to have small errors. Ideally the operator

L should be a left inverse of the operator ^ , although this is

almost certainly impossible.

Partitioning the error in this way shows, for example, that



using a better interpolation process from the grid to the obser-

vation points should decrease the overall analysis error. In

certain realizations, of course, the errors may Lend to cancel.

Since the three terms represent uncorrelated errors, the total

error variance over many realizations will tend to be the sum of

the individual variances. Thus, decreasing any one will lead to

statistically smaller error variances.

3.0 The Computer Simulation Methods

In order to simulate the behavior of the overall error under

various interpolation processes and first-guess error assump-

tions, a modular computer program was written to give several

options for the different processes. This made it possible to

test a large number of combinations of methods and assumptions.

In general terms, the process simulated consists of the

following steps:

(i) An underlying mathematically defined function

describing the field to be analyzed is evaluated on a

grid of points.

(ii) "i-'i rst-guess" error is generated from normal random

deviates with a pre-speci

f

ied standard deviation and spatial

correlation.

(iii) "Observed values" are generated by evaluating the

field to be analyzed at the observation points, and adding

normally distributed uncorrelated random deviates to these

values.

(iv) The first-guess values at the observation points -^re

obtained by one of several interpolation schemes.



(v) Based on the difference between first-guess and obser-

ved values at the observation locations, "corrected" values at

the grid points are obtained. I will refer to the corrected

values as the analysis values.

Most of the simulations were done with two different grids

and observation point sets. One was based on a 2.5° grid cover-

ing 112.5° W to 3 2.
b ° W and 30° N to 50° N, with 117 = 13x9 grid

points and 3G observation points within the grid, as shown in

Figure 1. The other was based on a 5° grid covering 125° W to

75° W, and 25° N to 50° N, with 3 8 = 11x8 grid points, and 5 7

observation points within the grid. This grid and the observa-

tion locations are shown in Figure 2. All the simulations used

were univariate analysis methods on a, two-dimensional field.

This simplification was necessary for two reasons. The first

reason is that the generation of error with a specified spatial

correlation required factorization of the correlation matrix into

the product of a lower triangular matrix and its transpose. The

correlation matrix is of order equal to the number of grid points,

and it is not particularly well conditioned. Incorporation of

multiple levels, a large grid, or correlated multiple variables

was therefore not possible. The other reason is that statistical

results required that numerous realizations be simulated, thereby

limiting the time available to do the computations.

The underlying mathematically defined field can be any spec-

ified function. The height field test function used is the on?

given by Koehler (1979) and also described in toahba and

Wendelberger (1930). The input parameters, 9
Q (the location of



the longitudinal wave), A9, (amount part: of the field is skewed

logi tudinally) , and p (the pressure for the height field) are

easily varied. The experiments simulated the 5013 nb height

field, using fixed or randomly varying 9Q and Ae. A typical

field of height contours generated by this function is shown in

Figure 3. First-guess errors had a nominal standard deviation,

r , of 30 m. The spatial correlation function was modeled using

exp( (-d/c^) ) , where d is distance (on the degree grid), and c^

is a correlation distance, specified as 1(5°. I have used degree

measure for distance rather than true distance, to maintain a

rectangular grid of first-guess points. This resulted in a

distortion of the distance varying with location. The observa-

tion errors had a nominal standard deviation, r
Q , of 10 n. The

observation locations approximately correspond to the North Ame-

rican radiosonde network within the grids being used. They are

shpwn, along with the grids, in Figures 1 and 2.

The output consisted of mean, root-mean-square, and maximum

errors over each data set (first-guess at grid points, first-

guess at observation locations, observation at observation loca-

tions, and analysis values at grid points) for each realization.

The first and third of these mainly served as a check on the

psuedo-random number generator (IMSL subroutines GGinIS^ and

GGN^L). The output also gave summaries of the same errors over

all realizations as well as the mean and standard deviation of

the root-mean-square errors over the realizations. Interpolation

processes are sometimes ill-behaved around boundaries. Since in

the global problem this can be avoided, the effects were mini-

mized here by tabulating error only over the interior grid



points. Thus the results are over 77 grid points on the? 2.5°

grid and 54 grid points on the 5° grid. The options simulated

for each step are described below.

a. Grid-to-observation point interpolation

First-guess values at the observation points are obtained by

interpolation from the first-guess grid values. I compared four

schemes. Others could be easily included, however my results

indicate it will probably not be fruitful to do so. The methods

I have used are:

(i) Piece wise bilinear interpolation. As with any piece-

wise defined method, one must first determine the rectangle in

which the evaluation point lies. Then, the evaluation is most

2easily seen as translation to the square [0,1] , followed by 3

one dimensional interpolations. This requires 8 operations,

where an operation is defined as a multiplication or division

followed by an addition or subtraction. Practically, the evalua-

tion can be accomplished in 5 operations (and a couple of extra

additions/subtractions). In my cost analysis I hive used 8

operations; this cost is very low compared to that of other

necessary calculations.

(ii) Bicubic spline interpolation. r us n d the TMSL subrou-

tines IBCCCU and IBCEVL. Preprocessing for the spline coeffi-

cients on a MgxNi grid requires 1 2N^xN i+27:Mi +51 Ng-1 operations.

Evaluation requires 2 operations to translate to [0,1] and 5

cubic interpolations at 9 operations each for a total of M
operations. The preprocessing operations involve solution of

tridiagonal systems of equations which are amenable to vectoriza-



tion for pipeline computers.

(iii) Piecewise bicubic interpolation. My implementation

of this scheme used 2 operations for a translation to ffi,1)

followed by 5 cubic interpolations, each costing 5 operations.

In addition, a difference table was formed at a cost of several

subtractions

.

(iv) Bessel bicubic interpolation. My implementation of

this scheme used 2 operations for a translation to [0,3] fol-

lowed by 5 cubic interpolations, each costing 5 operations.

Because of default to parabolic interpolation in boundary

regions, there were some additional tests. There were also a few

subtractions to form the difference table.

b. Observation-to-grid point interpolation

As in operational weather forecasting programs, the differ-

ences between first-guess and observed values at tha observation

points are used to correct the first-guess values on the grid to

obtain analysis values on the grid. I have tested twelve schemes

for performing this correction. I will give a brief description

of each method and refer the reader elsewhere for complete de-

tails. The first-guess error at the observation location, P^ =

(9^,^), is denoted by AH
k , k = .l,...,N . The number of grid

points is NgNi. I want; to evaluate the approximation at grid

points, but will write: it in terms of a generic point, P = (9,<M.

Recall that the standard deviation of the first-guess errors is

r
q , and the spatial covariance function is denoted by C(P f Q).

An operation count has been made for each of the methods. I

discuss briefly how various phases of the process contribute, and

8



summarize the results in Table I, along with some representative-

numbers that arise from my simulations. I have described some

schemes as local, implying that others are global. In tha con-

text of global objective analysis, all the schemes 1 consider are

local; the schemes which are global for my simulation are less

local than the ones I refer to as local.

(i) Optimum interpolation (01). This scheme was introduced

to the meteorological literature by Gandin (1963) and has re-

ceived widespread attention in recent years, e.g. see Bergman

(1979) and Lorenc (1981). The method in its proper form requires

that the spatial covariance function of the first-guess errors

and the standard deviation of the observation error be known.

Since these are known for this simulation, I have used their

properties. I have implemented the scheme as described in Franke

and Gordon (1983), viewing the approximation as a linear combina-

tion of the covariance functions associated with the observation

points. Thus we have

N o
AH(P) = Z a

k
C(P,P

k ) ,

k = l

where C(P,Q) is as noted above. The a^ are determined from the

system of equations
A H

1

(c(P
i
,P

j
) + & i3 r

?
)

Ah,
"o "o

where AH^ is the difference between the first-guess and observed

values at the i
t 1 observation point, r Q is the standard deviation

of the observation error, and 6^ is the Kronecker delta.

The cost of (01) consists of a preprocessing phase that



includes the generation and solution of the system of equations,,

followed by evaluation of the analysis at the grid points. For

N observations, preprocessing is at a cost of N (N +l)/2 func-

tion evaluations to generate the coefficient matrix and (Nq+SNI-

N )/(i operations plus tM Q square roots to perform CholesKy decom-

position and solution of the system of equations for the a k .

Evaluation costs N
Q covariance function evaluations and >i opera-

tions to form the linear combination representing the value of

the correction at each grid point.

(ii) Local optimum interpolation. In my version of this

scheme, nominally only points within the surrounding 10° square

are used; if fewer than 4 observations are available, the square

is expanded to 15° and so on, by 2.5° increments in each direc-

tion until at least 4 observations are available , The costs of

the search were not assessed. For each grid value correction, a

system of equations must be formed and solved, and the correspon-

ding correction computed. With n observations being used the

expressions given for 01 above apply with n replacing M . This

process was performed for each grid point, making the total cost

the sum of these costs over all grid points.

(iii) Global Barnes' method. This type of scheme is des-

cribed by Barnes (1973) and others. My scheme used the known

correlation functions as the weights for the first pass. Thus,

the approximation is

N.
o o

W k (P)AH k / E W k (P) ,

k=l k=l

where W k
= exp (

(- ( I I P-P k I I
/c^) ) , and Ali

k is as before. For the

10



sacond pass the correction has the same form, but AH y is replaced

by AH
k ,, the difference between the corrected first-guess and

] / ?
the observations. The quantity c

d is replaced by c^/3 ' for the

second pass. The total correction at the grid points is then the

sum of the two corrections. For each grid point the cost of this

method is N Q weight function evaluations per pass and N Q
-t-l opera-

tions per pass. In addition a separate interpolation from the

grid points to the observation points is required before the

second pass. This type of scheme has been defined and studied in

a different context, without a change of weight functions between

iterations, by Foley and Nielson (19315).

(iv) Local Barnes 1 method. The same localization process

as used for the local 01 scheme (ii) was used here. As for the

global version, two passes were used. Hence the cost for an

evaluation at a grid point with n neighboring points is the same

expression as in the global scheme, but with n replacing N_. In

addition, there was the search cost to determine the nearby

observations, which was not assessed. Costs of an interpolation

from the grid points to the observation points between passes was

included

.

(v) Statistical interpolation (c^ = 14°). In practical

applications of 01 the error correlations and standard deviations

cannot be modeled precisely. This has lead to the use of the

name "statistical interpolation". Computationally the method is

identical to the 01 scheme (i). Here the only difference is the

substitution of an inexact correlation distance, c^ = 14. The

algorithm and costs are identical.

(vi) Statistical interpolation (c^ = 7°). Aqnin this is

11



identical to (i) except that the inexact v/alue substituted for Cj

is 7.

(vii) Statistical interpolation (damped cosine correlation

function). Once more this scheme is computationally identical to

(i) except that the correlation function used is of the form

exp((-(l IP-QI l/c d )

2 )cos((l IP-QI l/c d ) ( /2)). I used the value c,,

= in.

(viii) Thin plate splines. This method is described by

Wahba and Wendlelberger (1980) and others. The approximating

function used by the scheme is

N
o

H(P) = I A kB(P,P k ) + aQ + b4 + c ,

k = l

where the basis function B(P,Q) =
I I P-Q I I

2 log I I P-Q I I . The A
k

and a, b, and c, are obtained by solving the system of equations

I A
k (B(P i/ Pj)+XN k r^ i

j)+a9
i
+b<*

i
+c = AHj ,i = l,...,N Q

j = l

N
o

I Aj0j =

j-l

N
o

Z Aj<|)j =

j-l

^o
E Aj = .

j = l

In the above, X is a smoothing parameter. The smoothing parame-

ter was chosen on the basis of a few trials with no attempt to

optimize its choice for a particular data set, as can be done.

Wendelberger (1931) describes a program that will automatically

choose X (and m as well, see next method), but I have not tested

12



it yet. This system of equations is symmetric, but not positive

definite. I have used standard L-U decomposition routines to

solve the system. Methods for symmetric indefinite systems us c

about half as many operations, however I observed greater numeri-

cal stability using the general decomposition process. There are

N (N +l)/2 basis function evaluations, and solution of the system

of equations requires (N
Q +3) (Nq+SN +3)/3 + (N Q +3)

2 operations.

Unlike symmetric positive definite systems, solution of these

equations requires searching for a pivot and pivoting. Evalua-

tion at each grid point then requires N
Q

basis function evalua-

tions and Nq+2 operations to form the sum.

(ix) Laplacian smoothing spline (m=3). This scheme is also

described by Wahba and Wendelbergar (1980), and is on2 of those

available in the program by Wendelberger (1981). The thin plate

spline met ho d is a member of this family (with m = 2 ) , but also has

the "thin plate" interpretation. The reason for inclusion of

this method is that the results of Wahba and Wendelberger indi-

cate that pressure height fields are better approximated using

values of m = 3 or 4. I will not describe the method fully. It

requires evaluation of N (N +l)/2 basis functions and 3N
Q

multi-

plications to set up the system of N +6 equations to be solver!.

Then N +5 operations would be required for evaluation at each

grid point, along with tne evaluation of N basis functions.

(x) Franke/Gordon. This scheme was suggested by Franke and

Gordon (1933) dS one which is an explicit scheme, similar to

Barnes' method, but whicii when iterated converges to the 01

interpolant. Three iterations, with the parameter = ,85||M||

13



(in the notation of that report) were performed. The cost in

operations is 2N (N Q +1) plus 3M Q for each grid point. The number

of weight function evaluations is 2N£ plus 3M
Q for each grid

point.

(xi) Pseudo-Barnes' method. This method was described in

Franke and Gordon (1983) and was at that time mistaken for Barnes 1

method. It differs in that the error at the second iteration is

Barnes' approximation evaluated at the observation point minus

the first-guess error, rather than the the corrected first-guess

at the grid point interpolated to the observation point minus the

observed value. The cost of this algorithm is evaluation of N£

weight functions plus 2N Q for each grid point. It requires

N (N +1) operations, plus 2(N QH) for each grid point.

(xii) Local pseudo-Barnes' method. This is a local version

of (xi), using the same "nearby" observation points as (ii) and

(iv). A grid point with n nearby observation points requires

2 2evaluation of n +2n basis functions and n +3n+2 operations.

4.0. Results

The simulation program described in the previous section was

run for a substantial number of different options. Each run

consisted of 100 realizations of a test field each containing

associated first-guess and observation errors. Table 2 gives the

assumed parameter values for the various cases. Not all combina-

tions of grid-to-observation point and observation-to-grid point

interpolation schemes were used in every case. The tables detail

the complete results and the entries indicate which combinations

were computed. Each combination in a given table (3-14)

14



corresponds to the same set of realizations, but different tables

depend on different realizations.

This investigation was designed to determine the influence

of the grid-to-observation point interpolation scheme. This

influence is seen by noting changes in error for a particular

observation-to-grid point interpolation scheme as the grid-to-

observation point interpolation scheme is varied. The rows of

Tables 3-14 give this information. The bicubic spline

interpolation produced significant improvement over piecewise

bilinear interpolation. This verifies the smaller magnitude of

the term Lm (H) in the error expression given by (1) for the

spline method. For 2.5° grids the errors were no smaller for

spline interpolation than for piecewise bicubic or Bessel bicubic

interpolation. Evidently the grid spacing was small enough (for

the test function used) that the interpolation error was not

significant. Spline interpolation did show an improvement over

piecewise bicubic and Bessel bicubic interpolation on the 5°

grid. Spline interpolation and the cubic interpolation methods

showed even greater improvement over piecewise linear interpola-

tion on the 5° grid than on the 2.5° grid. Interestingly the

first-guess errors at the observation points had greater rms

values for cubic interpolation than they did for linear interpo-

lation. This occurs because linear interpolation inherently has

greater smoothing.

•

Most of the useful information given in Tables 3-14 can be

more easily obtained from plots of the salient values. Figures

4-8 give plots of skill vs. cost of the algorithm in thousands of

15



operations per analysis. Here "skill" is defined to be 1
-

rmsa/r Q , where r m s a is the rms error in the analysis values. The

skill with respect to bilinear and bicubic interpolation are each

indicated, connected with a straight line to delineate the extent

between the two. The results for only one of the statistical

schemes, (vi), has been plotted since the others were nearly

identical. For these purposes I counted an evaluation of a basis,

weight, square root, or covariance function as 10 operations.

The plots reveal that the statistical schemes, loca] 01, and thin

plate splines all had close to the same accuracy and all were

slightly less accurate than 01. The Barnes' schemes, the

Franke/Gordon scheme, and Laplacian smoothing splines were least

accurate. The poor performance of the Laplacian smoothing

splines here, in contrast to the better performance obtained by

Wahba and Wendelberger (1930) is probably due to the scheme being

applied to the first-guess error function rather than to the

underlying true height field. The degradation in the performance

of the less than optimal statistical schemes is perhaps less

drastic than one might expect. It does appear that it was better

to underestimate the correlation distance than to overestimate

it.

Figure 9 shows plots of the rms errors in the analysis

values as a function of first-guess errors. The improvement in

the Barnes' scheme as the first-guess errors decrease was rapid.

The scheme gave results nearly as good as 01, the statistical

schemes, and thin plate splines. This occurred because the

principal problem became smoothing observation errors as the

first-guess errors tended to zero. Figure 10 shows plots of the



rms errors in the analysis values as a function of observation

errors. As observation errors go to zero the importance of

modelling the first-guess error was more important than

smoothing. Thus 01, the statistical schemes, and thin plate

splines improved the most, while both Barnes' schemes improved

little. Figures 11-13 show the rms errors in the analysis values

when incorrect variances wore specified for the interpolation

routines. .Methods not using these values were naturally unaf-

fected so that changes in the rms errors in the analysis values

for these methods only reflect the variability of the (different)

realizations used in the various cases. The plots show that the

use of incorrect values for the first-guess and observation error

variances did not drastically affect the accuracy of the statist-

ical methods. The interested reader is referred to Seaman (1983)

for more extensive tests of the effects of incorrect parameter

specification on the performance of statistical interpolation

methods

.

One of the attractive features of the statistical schemes is

that they afford a calculation for the estimated mean squared

error. These estimates do not depend on any particular realiza-

tion, so they were not incorporated into the process. However, I

did compute them as a side calculation for my grids and observa-

tion points. The results of these calculations are tabulated for

the 2.5° grid, along with the empirical rms errors obtained

during the simulations. Table 15 shows that the estimates given

by 01 were quite good; the estimated and empirical errors varied

only a few percent. They also were accurate for local 01, as

17



they should be. On the other hand, the slight degradation in

performance of statistical methods when incorrect correlations or

variances were specified did not carry over to the error esti-

mates. In fact the schemes that have their performance degraded

the most (in this case, using too long a correlation distance)

showed a decrease in the estimated error variance. Conversely,

shortening the correlation distance in the statistical method

increased the error estimate as well as the empirical error

obtained, although the empirical error is underestimated. This

indicates that one must not put too much faith in the error

estimates when the actual covariance structure is not known, as

in practice. It appears one could obtain just about any error

estimate wished simply by specifying unrealistic parameters for

the covariance structure.

The principal results of this study were as follows. The

decomposition of the error into independent components in (1)

identified possible ways to decrease the analysis error. This

lead to the results showing the contribution of the grid-to-

observation interpolation process, the necessity of smoothing in

the observation-to-grid interpolation process, along with accuracy,

The simulations provided confirmation of the above and yielded

information concerning the sensitivity of statistical interpola-

tion schemes to inexact parameter specification. The error esti-

mates provided by statistical schemes were shown to be sensitive

to inexact parameter specification.

18
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Tabled 9, 9 grid notes c

7

8

9

10

11

12

13

14

30

30

20

30

30

30

20

30

30

5

30

30

10

10

10

5

10

10

10

10

5

10

10

10£

100

100

100

random 3

random 3

random 3

random3

random 3

random3

random3

random3

13.775

random

random

random"

random

random

random

random

random"

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

13x9,2.5°

11x8,5°

<r )i

(r >i

<r >i

20

5

10

Table 2

a 9Q uniformly distributed in (-82 . 5°, 1 12 . 5°)

b A9 uniformly distributed in (-15°, 15°)
c Tne statistical interpolation routines were given

incorrect variances, as indicated
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F = 50C # 1heta= 100, Eelth = Entries: RMSF Analysis
rg = 3C, ro = 10 Mean FMSE(StE«v)
Number cf realizations = 100
13X9 grid of 2.5 degrees, 36 observation points

Grid-to-cfcs: FW linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Inteip 6.64 6.09 6.09 6.09
(Cd = 10) 6.53(1.18) 5.97(1.20) 5.98(1.19) 5.98(1.19)

Local 01 7.09 6.53 6.54 6.55
(Cd= 10) 6.99(1.19) 6.42(1.19) 6.44(1.19) 6.44(1.18)

Barnes* 9.27 8.87 8.87 8.88
2-Pass 9.08(1.03) 8.68(1.82) 8.68(1.82) 8.69(1.82)

Barnes' 8.42 7.95 7.96 7.96
(Lccal) 8.27(1.57) 7.79(1.56) 7.80(1.56) 7.81(1.56)

Stat Interp 7.28 6.78 6.79 6.79
(Cd = 14) 7.23(1.22) 6.66(1.27) 6.67(1.26) 6.68(1.26)

Stat Interp 7.34 6.87 6.87 6.87
(Cd = 7) 7.23(1.25) 6.75(1.26) 6.76(1.25) 6.76(1.25)

Stat Interp 7.37 6.91 6.91 6.91
(Dmpd Cos) 7.26(1.28) 6.79(1.28) 6.79(1.28) 6.79(1.28)

Thin PI Spl 7.12 6.59 6.60 6.60
(m = 2) 7.00(1.30) 6.45(1.33) 6.46(1.32) 6.47(1.32)

Lapl Sm Spl 10.54 10.25 10.25 10.25
(m = 3) 10.40(1.73) 10.10(1.73) 10.10(1.73) 10.11(1.73)

Frnke/Grdn 12.02 11.75 11.76 11.76
(3 Eass) 11.72(2.65) 11.45(2.65) 11.45(2.65) 11.45(2.65)

PseudoBarnes' 9.28 8.87 8.87 8.88
(2 Fass) 9.10(1.83) 8.68(1.82) 8.68(1.82) 8.69(1.82)

PseudoBames 1 8.20 7.70 7.71 7.72
(Lccal) 8.06(1.51) 7.55(1.50) 7.57(1.50) 7.57(1. bO)

TABLE 3
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E = 500, Theta = 100, Delth = 13.775
rg = 3C # ro = 10
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Entries: RMSE Analysis
Mean BMSE(StDev)

Grid-to-obs: FW Linear

Obs-to-grid

Bicub Spl PW Bicub Bsl Bicub

Opt Int«=ip
(Cd = 10)

Local OI
(Cd = 10)

Baires*
2-Eass

Earnes 1

(Lccal)

Stat Inter]:
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Inteip
(Died Ccs)

Thin PI Sfl
(m = 2)

Lapl Sm Spl
( = 3)

Frnke/Grdn
(3 Pass)

Ps€udoBarnes*
(2 Eass)

PseudoBarn^s*
(Lccal)

6.88
6.72(1.49)

7.40
7.24 (1.51)

9.73
9.53(1.96)

8.29
8.16(1.48)

7.71
7.56 (1.50)

7.54
7.39 (1.50)

7.37
7.26 (1.28)

7.45
7^29( 1.51)

9.75
9.55(1.97)

6 .19
6.05 (1.34)

6.76
6 .62 (1.37)

9.28
9 .09 (1.88)

7.79
7.67(1.36)

7.08
6.95 (1.35)

6.96
6 .82 (1.36)

6.91
6.79 (1.28)

6.80
6.66 (1.37)

9.28
9.09 (1.88)

6.20
6.06 (1.34)

6.77
6.63 (1.37)

9.29
9.10 (1.88)

7.77
7.66 (1.36)

7.09
6.96 (1.35)

6.96
6.83 (1.36)

6.91
6.79 (1.28)

6.81
6.67 (1.37)

6.21
6.06 (1.34)

6.91
6.79 (1.28)

TABLE 4
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E - 500, Theta = 100, Eelth = Entries: RMSE Analysis
rg = 20, ic = 10 Mean F.MSE(StD€v)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: FW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Inteip 6.23 5.75 5.76
(Cd = 10) 6.10(1.28) 5.62(1.22) 5.63(1.22)

Local OI 6.54 6.10 6.10
(Cd = 10) 6.41(1.28) 5.97(1.22) 5.98(1.22)

Earres' 7.18 6.85 6.86
2-Pass 7.03(1.47) 6.71(1.47) 6.71(1.41)

Barnes' 7.19 6.77 6.76
(Lccal) 7.08(1.22) 6.68(1.11) 6.67(1.10)

Stat Interp 6.70 6.30 6.31
(Cd = 14) 6.58(1.27) 6.19(1.19) 6.19(1.19)

Stat Interp 6.71 6.24 6.25
(Cd = 7) 6.58(1.30) 6.12(1.25) 6.12(1.24)

Stat Interp 6.78 6.31 6.32
(Dmpd Cos) 6.65(1.33) 6.18(1.28) 6.18(1.28)

Thir PI Spl 6.66 6.20 6.20
(m =2) 6.52(1.34) 6.06(1.29) 6.07(1.29)

Lapl Sm Spl 11.05 10.71 10.71
(m = 3) 10.84(2.16) 10.50(2.12) 10.50(2.12)

Frnke/Grdn 6.72 8.56 8.56
(3 Pass) 8.54(1.78) 8.39(1.70) 8.39(1.70)

PseudoEarnes 1 7.19 6.85 6.86
(2 Pass) 7.03(1.47) 6.85(1.41) 6.71(1.41)

PseudoBarnes' 6.78 6.37 6.38
(Lccal) 6.66(1.28) 6.25(1.24) 6.26(1.23)

TABLE 5
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E = 500, Theta = 100, Eelth =

rg = 3C, ro = 5

Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Entries: RMSE Analysis
Mean RMSE(StDev)

Grid-to-cbs: FW Linear

Obs-to-grid

Bicufc Spl PW Bicub Bsl Bicub

Opt Inteip 4

(Cd = 10) a

Local OI 5,

(Cd = 10) 4,

Barnes 1

2-Fass

Earnes

'

(Lccal)

Stat interp 5,

(Cd = 14) 5.

Stat Interp 5,

(Cd = 7) 4,

Stat Interp 4.

(Dmpd Cos) 4,

Thin PI Scl 4.

(m = 2) 4,

Lapl Sm Spl 6.

(m = 3) 5.

Frrke/Grdn 11.

(3 Pass) 11.

.57

.50 (0.

.03

.95 (0.

,88
.69 (1.

,39

,30( 1.

,26

17(0.

,02

95 (0.

96
,89 (0.

92
,85 (0.

08
98 (1.

82
55 (2.

PseudoEarnes' 8.89
(2 Pass) 8.70 ( 1.

PseudoBarnes* 7.30
(Local) 7.15(1.

3.76
83) 3.70(0.69)

4.26
91) 4.19(0.77)

8.48
85) 8.29(1.76)

5.90
10) 5.79(1.11)

4.57
92) 4.49(0.83)

4.28
82) 4.21(0.74)

4.22
83) 4 . 16 (0.75)

4.15
84) 4.09(0.72)

5.43
05) 5.33(1.06)

11 .61
55) 11.34(2.51)

8 .48
85) 8.29(1.76)

6.75
47) 6.60(1.40)

3.77
3.70(0.69)

4.27
4.20 (0.77)

8.49
8.30 (1.77)

5.89
5.78 (1.11)

4. 57
4.50 (0.83)

4.28
4.21 (0.74)

4.22
4. 16 (0.75)

4.16
4.10 (0.72)

5.43
5.33 (1.06)

11 .61

11.34(2.50)

8.49
8.30 (1.77)

6.76
6.62 (1.41)

TABLE 6
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P = 500, Iheta = RANDCf*, Delth = RANDOM, Enrries: RMSE Analysis
rg = 30, ro = 10 Mp.an RMSE(StDfcv)
Number cf realizations = 100

13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PW Linear

Obs-to-grid

Bicub Spl PW Bicub Bsl Bicub

Opt interp
(Cd = 10)

Local 01
(Cd = 10)

Barnes *

2-Eass

7.00
6.85(1.44)

7.48
7.33(1.49)

9.92
9.70(2.07)

6.40
6.27 (1.30)

6.90
6.90 (1.36)

9.52
9.33 (1.89)

Barnes'
(Local)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

8.34
8.21 (1.46)

7.92
7.77 (1.56)

7.56
7.41 (1.51)

7.89
7.76 (1.39)

7.41
7.27 (1. 43)

7.01
6.88 (1.36)

Stat Interp
(Ditpd Ccs)

7.58
7.43( 1. 53)

7.04
6.90 (1.38)

Thin PI £f1
(m = 2)

7.63
7.47( 1.58)

7.06
6.92 (1.42)

Lapl Sm £pl
(m = 3)

Frnke/Grdn
(3 Pass)

PseudoBames •

(2 Pass)

PseudoBames 1

(Local)

TABLE 7
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E = 500, Iheta = RANDCM, Delth = RANDOM, Entries: EMSE Analysis
rg = 30, ic = 10, rg (lie) = 20 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: EW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 7.14 6.47
(Cd = 10) 6.97(1.52) 6.32(1.35)

Local OI 7.56 6.92
(Cd = 10) 7.39(1.62) 6.77(1.41)

Barnes 1 9.64 9.21
2-Eass 9.42(2.04) 9.01(1.90)

Barnes* 8.30 7.73
(Local) 7.04(1.43) 7.62(1.33)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(Dirpd Ccs)

Thin PI Spl 7 -19 6.52
(m = 2) 7.04(1.45) 6.39(1.26)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 Eass)

PseudoBames*
(2 Eass)

PseudoBames*
(Lccal)

TABLE 8
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E = 500, Iheta = RANDOM, Delth = RANDOM, Entries: RMSE Analysis
rg = 2C, re = 10, rg (lie) = 30 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-tc-cbs: EW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 6.32 5.72
(Cd = 10) 6.17(1.36) 5.60(1.21)

Local 01 6.60 6.05
(Cd = 10) 6.47(1.33) 5.94(1.16)

Barnes' 7.10 6.69
2-Eass 6.95(1.45) 6.55(1.39)

Barnes' 7.09 6.54
(Local) 6.98(1.22) 6.45(1.08)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(Dirpd Ccs)

Thin PI Spl 6.31 5.75
(m = 2) 6.17( 1.30) 5.63 (1.16)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 Eass)

PseudoBa rnes

'

(2 Eass)

PseudoBaines

•

(Local)

TABLE 9
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E = 500, Theta = RANDCM, Delth = RANDOM, Entries: BMSE Analysis
rg = 3C, re = 10, ro (lie) = 5 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: EW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 7.51 6.88
(Cd = 10) 7.37(1.43) 6.74(1.38)

Local OI 7.96 7.37
(Cd = 10) 7.85(1.36) 7.26(1.27)

Barnes' S.81 9.28
2-Eass 9.60(2.01) 9.06(1.99)

Barnes' 8.U7 7.91
(Local) 8.36(1.32) 7.80(1.31)

Stat Interp
(Cd = 14)

Stat Interp
fCd = 7)

Stat Interp
(Dupd Ccs)

Thin PI Spl 7.65 6.94
(m = 2) 7.51 (1.43) 6.80 (1.39)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 Pass)

PseudoBames

•

(2 Pass)

PseudoBarnes*
(Local)

TABLE 10
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F = 500, Theta = RANDCM, Delth = RANDOM, Entries: RMSE Analysis
ig = 30, ic = 5 , ro(lie) = 10 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PW Linear Bicub Spl PW Bicub flsl Bicub

Obs-to-grid

Opt mterp 5.18 a. 19

(Cd = 1C) 5.10(0.91) 4.13(0.71)

Local 01 5.66 4.76
(Cd = 10) 5.56(1.04) 4.69(0.81)

Barnes 1 9.09 8.62
2-Eass 8.93(1.69) 8.47(1.61)

Barnes 1 6.71 6.06
(Local) 6.63(1.07) 5.97(1.04)

Stat Inter?
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(Dnpd Ccs)

Thin PI Spl 6.13 5.34
(m = 2) 6.02(1.15) 5.25(0.95)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 Eass)

PseudoBames*
(2 Pass)

PseudoBames 1

(Local)

TABLE 11
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P = 50C, Iheta = BANDCB, Delth = BANDOM, Entries: RMSE Analysis
rg = 5, re = 10 Mean FMSE(StD»v)
Number cf realizations = 100
13X9 grid of 2-5 degrees, 36 Observation points

Grid-to-cbs: PW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 3.58 3.32
(Cd = 1C) 3.44(1.01) 3.18(0.94)

Local OI 3.77 3.53
(Cd = 10) 3.63(1.02) 3.40(0.9769

Barnes 1 4.44 3.98
2-Eass 4.32(1.01) 3.87(0.90)

Barnes 1 6.26 5.73
(Local) 6.15(1.16) 5.64(1.00)

Stat Interp 3.61 3.41
(Cd = 14) 3.46(1.03) 3.27(0.96)

Stat Interp 3.65 3.39
(Cd = 7) 3.50(1.03) 3.25(0.97)

Stat Interp 3.78 3.51
(Dicpd Ccs) 3.62(1.07) 3.36(1.02

Thin PI Spl 4.00 3.85
(m = 2) 3.84(1.13) 3.70(1.07)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 Pass)

Ps€udoBarnes f

(2 lass)

PssudoBarnss 1

(Local)

TABLE 12
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E = 500, lh€ta = RANDOM, Delth = RANDOM, Entries: RMSE Analysis
ig = 30, re = Mean FMSE(StDsv

Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Gr id-to-cts

Obs-to-grid

FW Linear Bicut Spl PW Bicub Bsl Bicub

Opt Inteip
(Cd = 10)

6.06
5.8U (1.62)

0.74
0.69 (0.27)

Local OI
(Cd = 10)

3.86
3.79 (0.76)

2.40
2.2.30(0.69

Barnes"
2-Pass

9.38
9.16 (2.05)

8.96
8.74 (1.98)

Barnes

'

(Lccal)
6.27
6.15( 1.21)

5.63
5.49 (1.23)

Stat Interp
(Cd = 14)

7.62
7.10(2.74)

1.23
1 .16 (0.40)

Stat Inter?
(Cd = 7)

3.70
3.64 (0.68)

1.29
1.20 (0. 48)

Stat Inter?
(Dmpd Cos)

a. 48
4.37 (0.96)

1 .03
0.97 (0.36

Thir. PI Spl
(m = 2)

3.74
3.66 (0.78)

2.18
2.02(0.83)

Lapl Sm Spl
(m = 3)

Frrke/Grdn
(3 Pass)

PseudoEarnes 1

(2 Pass)

Pseudo Earnes*
(Lccal)

TABLE 13

33



E = 500, Theta = 100, Delth = Entries: RMSE Analysis
rg = 30, io = 10 Mean BMSE(StD£v)
Number of realizations = 100
11 BY fi grid of 5 degrees, 67 Observation points

Grid-to-obs: FW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Inteip 12.84 7.62 7.93 8.11
(Cd = 10) 12.74(1.62) 7.53(1.19) 7.84(1.20) 8.02(1.19)

Local. 01 13.33 8.44 8.74 8.92
(Cd = 10) 13.22(1.73) 8.33(1.33) 8.63(1.35) 8.82(1.32)

Barnes' 14.33 10.62 10.82 10.95
2-Pass 14.21(1.85) 10.49(1.70) 10.68(1.70) 10.81(1.71)

Barnes' 14.00 8.82 9.12 9.40
(Lccal) 13.91(1.55) 8.71(1.36) 9.79(1.35) 9.31(1.33)

Stat Interp 13.75 8.80 9.02 9.20
(Cd = 14) 13.25(1.57) 8.70(1.33) 8.92(1.31) 9.10(1.32)

Stat Interp 13.44 8.31 8.62 8.79
(Cd = 7) 13.35(1.63) 8.23(1.18) 8.53(1.21) 8.70(1.19)

Stat Interp 13.57 8.47 8.78 8.95
(Dmpd Cos) 13.47(1.65) 8.38(1.25) 8.68(1.27) 8.86(1.25)

Thin PI Spl 13.17 8.08 8.36 8.47
(m = 2) 13.07(1.59) 7.99(1.17) 8.27(1.19) 8.39(1.19)

Lapl Sm Spl 17.12 11.87 12.08 12.16
(m = 3) 17.01(1.86) 11.76(1.60) 11.97(1.57) 12.05(1.58)

Frnke/Grdn 17.29 15.23 15.31 15.36
(3 Eass) 17.14(2.29) 15.04(2.35) 15.13(2.34) 15.17(2.37)

Ps€udoBarnesM4.27 10.62 10.82 10.95
(2 Eass) 14.14(1.87) 10.49(1.70) 10.69(1.70) 10.82(1.71)

PseudoEarnss 1 13.89 9.73 10.00 10.17
(Lccal) 13.77(1.82) 9.60(1.58) 9.87(1.58) 10.05(1.57)

TABLE 14
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Estimated end (empirical) RMS errors for statistical methods

rg:
ro:

5

10
20
10

30
10

30
5

30

method

Opt Interp
(cd = 10)

Local OI
(cd = 10)

Stat Inteip
(cd = 14)

Stat Inteip
(cd = 7)

Stat interp
(Dmpd Cos)

3.30
(3. 3 2)

3.55
(3.5 3)

2.90
(3.41)

3. 76
(3.3 9)

3.82
(3.5 1)

5.62
(5.76)

5.96
(6.10)

4.60
(6.31)

7.14
(6.25)

7.00
(6.32)

6.29
(6.40)

6.80
(6.90)

5.07
(7.41)

8.26
(7.01)

7.94
(7. 04)

3. 78

(3.77)

4.39
(4. 27)

2.95
C.57)

5.46
(4.28)

5.03
(4.22)

0.65
(0.74)

2.21
(2.40)

0. 11

(1.23)

2.90
(1.29)

2.C6
(1.03)

TABLE 15
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T3: RG - 30, R0 = 10, 13X9 2.5 DEGREE GRID
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T5: RG - 20, R0 = 10, 13X9 2.5 DEGREE GRID
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T6: RG = 30, R0 = 5, 13X9 2.5 DEGREE GRID
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T7: RG - 30, R0 = 10, 13X9 2.5 DEGREE GRID
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T14: RG - 30, R0 - 10, 11X8 5 DEGREE GRID
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RO =10, 13X9 2.5 DEGREE GRID
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PERFORMANCE DEGRRDRTION, RG - 30, RO = 5
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